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Abstract

Introduction and overview. Hierarchical matrices, often abbreviated asH-matrices [1], comprise
a class of dense rank-structured matrices with a hierarchical low-rank structure, which is used to
approximate a dense or sparse matrix by dividing it into multiple submatrices in a hierarchical way,
where a number of submatrices are selected to be approximated by low-rank factors according to
an admissibility condition.

Computations of hierarchical matrices have attracted significant attention in the science and en-
gineering community as exploiting data-sparse structures can significantly reduce the computa-
tional complexity of many important kernels such as matrix–vector products, matrix factorizations,
etc. One particularly popular option within this class is the Hierarchical Off-Diagonal Low-Rank
(HODLR) format, whose definition is associated with the binary cluster tree Tℓ of depth ℓ ∈ N+ [4].

Definition 1 ((Tℓ, p)-HODLR matrix). H ∈ Rn×n is (Tℓ, p)-HODLR matrix if every off-diagonal
block H(Iki , I

k
j ) associated with siblings Iki and Ikj in Tℓ, k = 1, . . . , ℓ, has rank at most p.

In the proposed talk, we consider constructing HODLR matrices in a mixed precision manner and
offer insights into the resulting behavior of finite precision computations. Our analysis confirms
what is largely intuitive: the lower the quality of the low-rank approximation, the lower the precision
which can be used without detriment. We provide theoretical bounds which determine which
precisions can safely be used in order to balance the overall error.

Practical definition of HODLR matrix. In order to quantify the error incurred in the low-rank
factorization of the off-diagonal blocks, we introduce the practical definition of (Tℓ, p, ε)-HODLR
matrix as in Definition 2. The approximation error in the diagonal blocks of all levels of the (Tℓ, p, ε)-
HODLR matrix H̃ is immediately obtainable following Definition 2 in the Frobenius norm, and, as
a special case, one can show ∥H̃ −H∥F ≤ ε∥H∥F .

Definition 2 ((Tℓ, p, ε)-HODLR matrix). Let H ∈ Rn×n be a (Tℓ, p)-HODLR matrix. Then
H̃ ∈ Rn×n is defined to be a (Tℓ, p, ε)-HODLR matrix to H, if every off-diagonal block H̃(Iki , I

k
j ) as-

sociated with siblings Iki and Ikj in Tℓ, k = 1, . . . , ℓ, satisfies ∥H̃(Iki , I
k
j )−H(Iki , I

k
j )∥ ≤ ε∥H(Iki , I

k
j )∥,

where 0 ≤ ε < 1.

Mixed-precision representation. First, we develop a mixed precision algorithm for constructing
HODLR matrices. Let us assume that the off-diagonal blocks from the kth level of H̃, 1 ≤ k ≤ ℓ,
are compressed in the form

H̃
(k)
ij = Ũ

(k)
i (Ṽ

(k)
j )T , |i− j| = 1, (1)

where Ũ
(k)
i ∈ Rn/2k×p has orthonormal columns to precision u and Ṽ

(k)
j ∈ Rn/2k×p. Our idea is to

compress the low-rank blocks H̃
(k)
ij and represent the low-rank factors Ũ

(k)
i and Ṽ

(k)
j in precisions

potentially lower than the working precision; given a set of available precisions, the same precision,
say, uk, is used for the storage of all low-rank factors at level k. To keep the global error in the
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mixed-precision representation at the same level as an unified working-precision representation, we
choose

uk ≤ ε/(2k/2ξk),

where ε > u (since the factorizations are calculated in the working precision u) can be thought of
as the accuracy threshold in the low-rank factorizations (1) and

ξk := max
|i−j|=1

∥H̃(k)
ij ∥F /∥H̃∥F , 1 ≤ k ≤ ℓ,

which essentially characterizes the relative importance of the off-diagonal blocks in level-k to the
whole matrix in terms of magnitude. This means that, as the tree depth increases, the unit roundoff
uk must be smaller to offset the error between the HODLR matrix and the original matrix and
that, since 0 < ξk < 1 holds for k = 1: ℓ, generally no higher-than-working precisions are needed
among uk for a HODLR matrix with mild depth ℓ, say, ℓ ≤ 10 (so 2k/2 ≤ 32). We then propose
an adaptive scheme for precision selection, which dynamically determines what degree of precision
is required for the computations in each level of the cluster tree. We show that the error in the
resulting mixed-precision representation Ĥ satisfies

∥H − Ĥ∥F ≲ (2
√
2ℓ+ 1)ε∥H∥F .

Matrix–vector products. Next, we give error bounds on the working precision u so that the
backward error in computing the matrix–vector product in finite precision does not exceed the
error resulting from inexact representation of the matrix. The key idea is that, if the HODLR
matrix H is approximated by the mixed-precision representation Ĥ, to calculate the matrix–vector
product b ← Ĥx we should try to balance the errors occurring in the approximation of Ĥ and in
the finite-precision computation, as shown from the following result.

Lemma 1. Let Âp an approximation of A such that ∥A − Âp∥F ≲ η for some η > 0. Then the

error due to finite precision computation of ŷ = fl(Âpx) will be no larger than the error due to the

computed inexact representation when the working precision has unit roundoff u ≤ η/(n∥Âp∥F ).

Applying Lemma 1 to the computation of the matrix–vector product associated with Ĥ
(k)
ij and

ignoring the errors in the summation of the vector elements (which are usually negligible compared
with the error in the block matrix–vector products), we can obtain the following result.

Theorem 1. Let H̃ be a (Tℓ, p, ε)-HODLR matrix associated with the HODLR matrix H, and let
Ĥ denote our mixed-precision representation. If b = Ĥx is computed in a working u ≤ ε/n, then
the computed b̂ satisfies

b̂ = fl(Ĥx) = (H +∆H)x, ∥∆H∥F ≤ 10 · 2ℓ/2ε∥H∥F .

LU factorization. Finally, we derive error bounds on the LU factorization of the mixed-precision
HODLR matrix Ĥ. The factorization is done by a recursive algorithm which computes for all but
the bottom level the block LU factorization[

H11 H12

H21 H22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
,

where L11 and L22 are lower triangular and U11 and U22 are upper triangular, and it invokes dense
routines on the bottom level. Based on the results from [3, sect. 3.5] and [3, Thm. 8.5], we first
look at the backward error in the LU factorization of the HODLR matrices at level k = ℓ− 1 and
then use induction to quantify the backward error in the LU decomposition of diagonal blocks in

the other levels, up to the level k = 0 (H
(0)
11 := H). We arrive at the following result.
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Theorem 2. Let Ĥ be the mixed-precision ℓ-level HODLR representation. If the LU decomposition
of Ĥ is computed in a working precision u ≲ ε/n, then the LU factorization of the HODLR matrix
Ĥ satisfies

L̂Û = H +∆H, ∥∆H∥F ≲ 2ℓ+1ε∥H∥F + 11 · 2ℓε∥L̂∥F ∥Û∥F .

Noted that our finite precision analysis remains valid in the case where the HODLR matrices are
stored in one precision and therefore also provides new results for this case. We will also present
the numerical simulations we performed across various datasets to verify our theoretical results.

The talk is based on [2]. We have also developed a MATLAB toolbox called mhodlr for matrix
computations with HODLR representation and mixed-precision simulations, which supports other
important operations within the class of HODLR matrix such as (mixed-precision) matrix multi-
plication and Cholesky factorization. The documentation webpage of mhodlr MATLAB toolbox is
at https://mhodlr.readthedocs.io/en/latest/index.html.
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