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Matrix Polynomials

We want to evaluate the matrix polynomial
m .
Pm(X) = biX' = bol + by X + bX? + -+ + bpX™,
i=0

where
e me N,
e b; € C and mostly nonzero,
o X e CM™n.
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e Computation of matrix functions

e series expansion (Taylor series)

e rational functions g(X)~'p(X)

e Solution of matrix equations
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Paterson—Stockmeyer Method

For a positive integer s, we can rewrite (Paterson and
Stockmeyer, 1973)

pm(X) =D Bi-(X°), r=m/s],
i=0

where

( s—1

st,-HXf, i=0,...,r—1,

j=0
m—sr

> bey X, i=r.
( /=0
e pm(X) is a polyn. in X* with coefficients B;: e.g., (s = 3),
Ps(X) = bl (X3)24+(bsX? + by X + bal) X34 (b2 X? + by X + bolz

Ny . A\ ~~
Bz B; By
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Paterson—Stockmeyer Method: Evaluation

Pn(X) = (((B,Xs + B )X+ B p) XS+ -+ B1)XS + By

Input : X € C"™" by, by,..., by € C
Output: Z = p,(X)

1 X+ LX X

2 fori <+ 2to sdo

3 \ X+ XX;_y > X2 ..., XS computed and stored

4 end

5 Z ¢ S0 bary

6 fori < r—1 down to O do

7 | Z ZX+ 35 beinX;

8 end

9 return Z
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Paterson—Stockmeyer (PS) Method

Pn(X) = (((B,Xs + B )X+ B p) XS+ -+ B1)XS + By

m (s — 1)n? additional storage

m about s+ r — 1 matrix products (recall that r = [m/s])

Theorem (Hargreaves, 2005; Fasi, 2019)

The choice s = |/m] or s = [\/m] minimizes the number
of matrix products required to evaluate p,,(A) over all

choices of s. The minimized number of matrix products is
about 2./m.

xiaobo.liu@manchester.ac.uk Evaluating matrix polynomials



Exploiting Mutiple Precisions in PS

Practical considerations:
e || X|| is usually small;
e b; can decay quickly, e.g., the Taylor series of exp, cos.

For PS method

Pon(X) = (((B,xs + B )X+ Bo) XS+ + B1>XS + By,
can we have ||Bj| || X®|| < ||Bi_1|l,i=r:1?

Key idea: 1. If |A| < |C|,|B| < |C|, and |A||B| < |C|,
computing the product in AB + C in a lower precision than

the

2. Apply the above idea recursively in the evaluation of pp,.
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Exploiting Multi-Precisions in PS: Framework

Ur—1
7 ur N
~ =
Pm(X) = (((BrXs+Br_1)XS+Br_2)XS +-- 4 B1)XS + Bo.
N——

where
1B = Bill < uillBill, i=r:0, [IX5=X| <u | X,
and the precisions u; satisfy (U= Uy < U1 < -+ < Uy)

Y Bl
I

~ ———U;_ Upg = U
ETES

such that ||pm — Pm|| < ullPm|l-
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The Matrix Multiply-Add in Two Precisions
A P

If the relative forward errors in A and B are ® Up, and that in
C € C™"is us, then for E = fl (flp(AB) +C)— (AB+0C),

n-+2)u, + 2
(n+2)up icl

E|l < Al ||B
B < =t 20 g 1 181 + -

where the matrix product is done in precision u, and the
in precision

o If |A]|B| < |C| and us < up, to have ||E|| < 3us || C|,

~ JAlLBl
el "

so for moderate n we have v; < Up.
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Explicit Powering for By Using Two Precisions

Key idea: For the matrix sum X; + Xs in up, where
| Xa|| < || X1]|- X2 can be stored in a lower precision
” Up || Xi + Xl un| X4l
T (M tun)liXel X

)~(2: Xo converted into precision u, > up, we have
fla(Xs + X2) = (Xs + Xa(1 + 60))(1 + 0n), [0n] < Un, |8e] < U,
and
E = fln(Xi + Xo) — (X1 + Xo) = 0n(Xs + Xe) + 0,(1 + 0p) Xa
with
IE|| < un | X3 + Xo|| + ue(1 + up) | Xe|| < 2un || X1 + Xe| -
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Explicit Powering for By Using Two Precisions

Track the norm of fl5(qi(X)) := fla(bol + b1 X + - - - + biX7),

until, for j = t,
G 19:(X)] - U U < 19 (X)I|__ [Ifla(q:(X))]]
Un ™ [Brga | [[ X5 || X HthXfHH by X1

where t; + b =t + 1.
e Can find the best available t;, t, in f norm estimations.

qu( +br+1X’“H qu M=o X e e
| b2 X2 < | b2 X2 ~ Un Up
e Can form the rest of the required powers X', ... X5 "in

precision u; > up, if
Hbt+1Xt+1 H Z Hbt+2)(t+2H Z z Hbs_1XS_1 H '
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Taylor Approximant of the Matrix Exponential

If || X|[s < /s!(= s/e+ 1), for i = 2: r and sufficiently large

s >3,
[|Bi-1][1 > (1 5 l) s
1Bill+[1X5]| el

Recall that we want, || B;|| || X®|| < ||B;_ 1|, i = r: 1, for the
used precisions u; to be well separated in computing

Pn(X) = (((B,xs + B )X+ Bro) XS+ + B1>XS + By,

e the ratio ||Bi_1||1/(||Bi||1]|X®||1) tends to increase
polynomially as i increases, i =2: r

o Bound not applicable for ||Bo||+/(||B: 1] X%]l1)
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For the Matrix Exponential: the Algorithm

0o N O o~ O DN =

Input : XecC™ meN",u>0
Output: A Taylor approximant P of order m for eX
S < [\/ﬁ?},Uo%U,X()(—/,)Q +— X
Compute By and Y = X®in u (and potentially u, > u)
while (e — 1)s!||By||s <er| Y|+ and s < mdo
By + By + Y/S!,S<—S+1
Update Xs + XY and Y < X,
end
fori«~ 1tor« [m/s| do
Compute B; using elements in X and estimate || B;||1
Downgrade B; to u; < u;_1||Bi_1|+/(nl|Bi]}1]| Y}+)
end
P =B,
fori«+< rto1do
Convert Y into u; and compute P + PY in u;
Form P« P+ B;_1in uj_4
end
return P
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The Parameter s and the Cost

m The matrix products in computing By are most
expensive: smaller s with larger r = | m/s| benefits
efficiency

m Smaller s more strict on || X||; < v/s!
m Larger s more likely being accepted by the algorithm
Overall cost: [v/m] —1 < s—1 < m— 1 matrix

multiplications in precision v and 1 matrix multiplication in
eachof uj>u,i=1:r,where 1 <r=|m/s| < [v/m].
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Numerical Experiment Using High Precisions
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Left: X = rand (n). Right: X = randn (n). n =50

| X||y = 1 and u = 10-%* (Simulated by Advanpix
Multiprecision Computing Toolbox).
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Numerical Experiment Using Low Precisions
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Left: X = rand (n). Right: X = randn (n). n =50
IX|i=1andu=2"3~1.1x10""6.

e Only double, , and half (simulated by chop)
(Higham and Pranesh, 2019) precisions are used.
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Numerical Experiment: Approximating exp(X)

Table: The minimal degree m such that the error in approximating
the matrix exponential via a Taylor approximant is of order u. d;
represents the equivalent decimal digits of precision u;.

(U, m) (s7 r) (d1 0o, ... dr)
(10—64754) (8 ) (61 54 45 35 24 13)
(10-128.92)  (10,9) (123,113,101, 88,73, 58,42, 25, 8)

(10-2% 158) (13,12) (248,234,217,198,178,156,133,110,86,62,36,11)

X =gallery (' cauchy’,n) for n =20 with | X|; ~ 2.65

e The default s = [/m] is chosen in all cases, and 20% of
the matrix products were performed in precision u'/2 or
much lower.
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Numerical Experiment: Approximating exp(X)

For Xy = gallery (’ forsythe’,10,1le-10,0) and

0 -0.6 045
—-24 40 038

the degree m = 20 in double precision (Fasi and Higham,
2019).

-06 O 1.2]

m The fixed-precision PS: 8 matrix multiplications in
double precision.

m The mixed-precision PS: 6 matrix multiplications in
double precision and 1 matrix multiplication in
precision and 1 matrix multiplication in half precision.
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Concluding Remarks

m Lower precisions can be used in the PS method if || X]|
is small and the coefficients decay quickly.

m The key idea is to perform computations on data of
small magnitude (norm) in low precision.

N. J. Higham and X. Liu. Mixed-precision Paterson—Stockmeyer
method for evaluating matrix polynomials. Working note.
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Proof of Thm. 1

On defining
AA=A-A AB=B-B, AC=C-C,
we have

E =fl5(fl,(AB) + C) — (AB+ C)
—AAB + AAB + AAAB + E, + AC + Es,

where, with 75 := nu,/(1 — nup),

Ep <y |A+ AA[[|B+ AB|,
Es <us || (A+ AAY(B+ AB) + E, + C + AC||.

The result follows after straightforward calculation. ]
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Proof of Thm. 2: |

We have, with || X|; =: o < /s, fori=2: rand s > 3,

X+

+ e |

!+ X g X Xl

1Bi-1ll1 :H(u DI (G o
IBill 1l Yl+ ‘

1

U

o oS~ 1
- ((if1)s)! - <((i—1)s+1)! + sy T T [ )srs= 1*)')
- 1 o os—1
(@ TGy T T Gerem 1)1) s!

1 o 1 g2
(GO (G ( T s T st 2>

,L(-] _|_,L+...+L71>SI
(is)! is+1 (is+1)s—1 :
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Proof of Thm. 2: Il

On the other hand, we know from Stirling’s approximation

o /s ¥2rs 1
g S S ~ — € , S — 00,
e

which says o grows at most (linearly) like e~'s for sufficiently
large s. Therefore, we have, for sufficiently large s,

o 1—(o/((i—1)s42)°" ¢ -
~+(8) = (DI () o) B e () N ) (1 - @)

1 1—(o/(is+1))S I(is — 8)!
(%'). 1S0'//((I}SS+1))) sl(is — s)!

(-2 ()= (-2 &= (1-2)#

OJ
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