

Mixed-precision Paterson—Stockmeyer Method for Evaluating Matrix Polynomials

Xiaobo Liu, Nicholas J. Higham

Department of Mathematics, The University of Manchester, UK

29th Biennial Numerical Analysis Conference, Glasgow, June 28, 2023

Matrix Polynomials

We want to evaluate the matrix polynomial

$$p_m(X) = \sum_{i=0}^m b_i X^i = b_0 I + b_1 X + b_2 X^2 + \cdots + b_m X^m,$$

where

- $m \in \mathbb{N}$,
- $b_i \in \mathbb{C}$ and mostly nonzero,
- $X \in \mathbb{C}^{n \times n}$.

Motivation

- Computation of matrix functions
 - series expansion (Taylor series)
 - rational functions $q(X)^{-1}p(X)$
- Solution of matrix equations

Paterson-Stockmeyer Method

For a positive integer s, we can rewrite (Paterson and Stockmeyer, 1973)

$$p_m(X) = \sum_{i=0}^r B_i \cdot (X^s)^i, \quad r = \lfloor m/s \rfloor,$$

where

$$B_i = egin{cases} \sum_{j=0}^{s-1} b_{si+j} X^j, & i = 0, \dots, r-1, \ \sum_{j=0}^{m-sr} b_{sr+j} X^j, & i = r. \end{cases}$$

• $p_m(X)$ is a polyn. in X^s with coefficients B_i : e.g., (s=3),

$$p_6(X) = \underbrace{b_6 I}_{B_2} (X^3)^2 + \underbrace{(b_5 X^2 + b_4 X + b_3 I)}_{B_1} X^3 + \underbrace{(b_2 X^2 + b_1 X + b_0 I)}_{B_0}$$

Paterson-Stockmeyer Method: Evaluation

$$p_m(X) = \Big(\big((B_r X^s + B_{r-1}) X^s + B_{r-2} \big) X^s + \cdots + B_1 \Big) X^s + B_0$$

Input :
$$X \in \mathbb{C}^{n \times n}$$
, $b_0, b_1, \dots, b_m \in \mathbb{C}$

Output:
$$Z = p_m(X)$$

1
$$\mathcal{X}_0 \leftarrow I, \, \mathcal{X}_1 \leftarrow X$$

- 2 for $i \leftarrow 2$ to s do
- $\boldsymbol{3} \mid \mathcal{X}_i \leftarrow \boldsymbol{X} \mathcal{X}_{i-1} \triangleright \boldsymbol{X}^2, \dots, \boldsymbol{X}^s$ computed and stored
- 4 end
- 5 $Z \leftarrow \sum_{j=0}^{m-sr} b_{sr+j} \mathcal{X}_j$
- 6 for $i \leftarrow r 1$ down to 0 do
- 7 | $Z \leftarrow Z\mathcal{X}_s + \sum_{j=0}^{s-1} b_{si+j}\mathcal{X}_j$
- 8 end
- 9 return Z

Paterson-Stockmeyer (PS) Method

$$p_m(X) = (((B_rX^s + B_{r-1})X^s + B_{r-2})X^s + \cdots + B_1)X^s + B_0$$

- $(s-1)n^2$ additional storage
- about s + r 1 matrix products (recall that $r = \lfloor m/s \rfloor$)

Theorem (Hargreaves, 2005; Fasi, 2019)

The choice $s = \lfloor \sqrt{m} \rfloor$ or $s = \lceil \sqrt{m} \rceil$ minimizes the number of matrix products required to evaluate $p_m(A)$ over all choices of s. The minimized number of matrix products is about $2\sqrt{m}$.

Exploiting Mutiple Precisions in PS

Practical considerations:

- ||X|| is usually small;
- b_i can decay quickly, e.g., the Taylor series of exp, cos.

For PS method

$$p_m(X) = \left(\left((B_r X^s + B_{r-1}) X^s + B_{r-2} \right) X^s + \dots + B_1 \right) X^s + B_0,$$
 can we have $\|B_i\| \|X^s\| \ll \|B_{i-1}\|, i = r : 1$?

Key idea: 1. If $|A| \le |C|$, $|B| \le |C|$, and $|A||B| \ll |C|$, computing the product in AB + C in a lower precision than the addition:

$$fl_{high}(fl_{low}(AB) + C)$$
.

2. Apply the above idea recursively in the evaluation of p_m .

Exploiting Multi-Precisions in PS: Framework

$$\rho_m(X) = \left(\underbrace{\left(\underbrace{B_r X^s + B_{r-1}}^{u_r}\right) X^s + B_{r-2}}_{u_{r-1}} \right) X^s + \cdots + B_1 \right) X^s + B_0.$$

where

$$\|\widehat{B}_{i} - B_{i}\| \leq u_{i} \|B_{i}\|, \ i = r : 0, \quad \|\widehat{X}^{s} - X^{s}\| \leq u_{1} \|X^{s}\|,$$

and the precisions u_i satisfy $(u = u_0 \ll u_1 \ll \cdots \ll u_r)$

$$u_i \approx \frac{\|B_{i-1}\|}{n \|B_i\| \|X^s\|} u_{i-1}, \quad u_0 = u,$$

such that $\|p_m - \widehat{p}_m\| \lesssim u \|p_m\|$.

The Matrix Multiply-Add in Two Precisions

Theorem 1.

If the relative forward errors in \widehat{A} and \widehat{B} are u_p , and that in $\widehat{C} \in \mathbb{C}^{n \times n}$ is u_s , then for $E \equiv \mathrm{fl}_s(\mathrm{fl}_p(\widehat{A}\widehat{B}) + \widehat{C}) - (AB + C)$,

$$\|E\| \leq \frac{(n+2)u_p + \frac{u_s}{u_s}}{1 - ((n+2)u_p + u_s)} \|A\| \|B\| + \frac{2u_s}{1 - 2u_s} \|C\|,$$

where the matrix product is done in precision u_p and the matrix addition in precision u_s .

• If $|A||B| \ll |C|$ and $u_s \ll u_p$, to have $||E|| \lesssim 3u_s ||C||$,

$$u_s \approx \frac{\|A\| \|B\|}{\|C\|} n u_p,$$

so for moderate n we have $u_s \ll u_p$.

Explicit Powering for B_0 Using Two Precisions

Key idea: For the matrix sum $X_1 + X_2$ in u_h , where $||X_2|| \ll ||X_1||$. X_2 can be stored in a lower precision

$$u_{\ell} \leq \frac{u_h \|X_1 + X_2\|}{(1 + u_h) \|X_2\|} \approx \frac{u_h \|X_1\|}{\|X_2\|}.$$

 \widetilde{X}_2 : X_2 converted into precision $u_\ell > u_h$, we have

$$\mathsf{fl}_h(X_1+\widetilde{X}_2)=(X_1+X_2(1+\delta_\ell))(1+\delta_h),\;|\delta_h|\leq u_h,\;|\delta_\ell|\leq u_\ell,$$

and

$$E := \mathsf{fl}_h(X_1 + X_2) - (X_1 + X_2) = \delta_h(X_1 + X_2) + \delta_\ell(1 + \delta_h)X_2$$

with

$$||E|| \le u_h ||X_1 + X_2|| + u_\ell (1 + u_h) ||X_2|| \le \frac{2u_h}{2u_h} ||X_1 + X_2||.$$

Explicit Powering for B_0 Using Two Precisions

Track the norm of $fl_h(q_j(X)) := fl_h(b_0I + b_1X + \cdots + b_jX^j)$, until, for j = t,

$$\frac{u_{\ell}}{u_h} \lesssim \frac{\|q_t(X)\|}{\|b_{t+1}\| \|X^{t_1}\| \|X^{t_2}\|} \Rightarrow \frac{u_{\ell}}{u_h} \lesssim \frac{\|q_t(X)\|}{\|b_{t+1}X^{t+1}\|} \approx \frac{\|\mathsf{fl}_h(q_t(X))\|}{\|b_{t+1}X^{t+1}\|},$$
 where $t_1 + t_2 = t + 1$.

• Can find the best available t_1 , t_2 in t norm estimations.

$$\begin{split} &\text{If } \|b_{t+2}X^{t+2}\| \lesssim \|b_{t+1}X^{t+1}\|, \, \mathsf{next}, \\ &\frac{\|q_t(X) + b_{t+1}X^{t+1}\|}{\|b_{t+2}X^{t+2}\|} \gtrsim \frac{\|q_t(X)\| - \|b_{t+1}X^{t+1}\|}{\|b_{t+2}X^{t+2}\|} \gtrsim \frac{u_\ell}{u_h} - 1 \approx \frac{u_\ell}{u_h}. \end{split}$$

• Can form the rest of the required powers X^{t+1}, \ldots, X^{s-1} in precision $u_{\ell} > u_h$, if

$$||b_{t+1}X^{t+1}|| \gtrsim ||b_{t+2}X^{t+2}|| \gtrsim \cdots \gtrsim ||b_{s-1}X^{s-1}||$$
.

Taylor Approximant of the Matrix Exponential

Theorem 2.

If $\|X\|_1 \le \sqrt[s]{s!} (\approx s/e + 1)$, for i = 2: r and sufficiently large $s \ge 3$,

$$\frac{\|B_{i-1}\|_1}{\|B_i\|_1\|X^s\|_1} \gtrsim \left(1 - \frac{1}{e^i}\right)i^s.$$

Recall that we want, $\|B_i\| \|X^s\| \ll \|B_{i-1}\|$, i = r : 1, for the used precisions u_i to be well separated in computing $p_m(X) = \left(\left((B_r X^s + B_{r-1}) X^s + B_{r-2} \right) X^s + \dots + B_1 \right) X^s + B_0.$

- the ratio $||B_{i-1}||_1/(||B_i||_1||X^s||_1)$ tends to increase polynomially as i increases, i = 2: r
- Bound not applicable for $||B_0||_1/(||B_1||_1||X^s||_1)$

For the Matrix Exponential: the Algorithm

```
Input : X \in \mathbb{C}^{n \times n}, m \in \mathbb{N}^+, u > 0
    Output: A Taylor approximant P of order m for e^{x}
 1 s \leftarrow \lceil \sqrt{m} \rceil, u_0 \leftarrow u, \mathcal{X}_0 \leftarrow I, \mathcal{X}_1 \leftarrow X
 2 Compute B_0 and Y = X^s in u (and potentially u_{\ell} > u)
 3 while (e-1)s! \|B_0\|_1 \le e\tau \|Y\|_1 and s < m do
        B_0 \leftarrow B_0 + Y/s!, s \leftarrow s+1
      Update \mathcal{X}_s \leftarrow XY and Y \leftarrow \mathcal{X}_s
 6 end
 7 for i \leftarrow 1 to r \leftarrow |m/s| do
         Compute B_i using elements in \mathcal{X} and estimate \|B_i\|_1
         Downgrade B_i to u_i \leftarrow u_{i-1} \|B_{i-1}\|_1 / (n\|B_i\|_1 \|Y\|_1)
10 end
11 P = B_r
12 for i \leftarrow r to 1 do
13 | Convert Y into u_i and compute P \leftarrow PY in u_i
14 Form P \leftarrow P + B_{i-1} in u_{i-1}
15 end
16 return P
```

The Parameter s and the Cost

- The matrix products in computing B_0 are most expensive: smaller s with larger $r = \lfloor m/s \rfloor$ benefits efficiency
- Smaller s more strict on $||X||_1 \leq \sqrt[s]{s!}$
- Larger s more likely being accepted by the algorithm

Overall cost: $\lceil \sqrt{m} \rceil - 1 \le s - 1 \le m - 1$ matrix multiplications in precision u and 1 matrix multiplication in each of $u_i > u$, i = 1 : r, where $1 \le r = \lfloor m/s \rfloor \le \lceil \sqrt{m} \rceil$.

Numerical Experiment Using High Precisions

Left:
$$X = \text{rand}(n)$$
. Right: $X = \text{randn}(n)$. $n = 50$

 $||X||_1 = 1$ and $u = 10^{-64}$ (Simulated by **Advanpix Multiprecision Computing Toolbox**).

Numerical Experiment Using Low Precisions

Left:
$$X = \text{rand(n)}$$
. Right: $X = \text{randn(n)}$. $n = 50$

$$||X||_1 = 1$$
 and $u = 2^{-53} \approx 1.1 \times 10^{-16}$.

• Only double, single, and half (simulated by chop) (Higham and Pranesh, 2019) precisions are used.

Numerical Experiment: Approximating exp(X)

Table: The minimal degree m such that the error in approximating the matrix exponential via a Taylor approximant is of order u. d_i represents the equivalent decimal digits of precision u_i .

$$\begin{array}{c|cccc} (u,m) & (s,r) & (d_1,d_2,\ldots,d_r) \\ \hline (10^{-32},32) & (6,5) & (30,26,20,13,6) \\ (10^{-64},54) & (8,6) & (61,54,45,35,24,13) \\ (10^{-128},92) & (10,9) & (123,113,101,88,73,58,42,25,8) \\ (10^{-256},158) & (13,12) & (248,234,217,198,178,156,133,110,86,62,36,11) \\ \hline \end{array}$$

$$X = \text{gallery}('\text{cauchy}', \text{n}) \text{ for } n = 20 \text{ with } ||X||_1 \approx 2.65$$

• The default $s = \lceil \sqrt{m} \rceil$ is chosen in all cases, and 20% of the matrix products were performed in precision $u^{1/2}$ or much lower.

Numerical Experiment: Approximating exp(X)

For $X_1 = \text{gallery}('\text{forsythe}', 10, 1e-10, 0)$ and

$$X_2 = \begin{bmatrix} -0.6 & 0 & 1.2 \\ 0 & -0.6 & 0.45 \\ -2.4 & 4.0 & 0.8 \end{bmatrix},$$

the degree m = 20 in double precision (Fasi and Higham, 2019).

- The fixed-precision PS: 8 matrix multiplications in double precision.
- The mixed-precision PS: 6 matrix multiplications in double precision and 1 matrix multiplication in single precision and 1 matrix multiplication in half precision.

Concluding Remarks

- Lower precisions can be used in the PS method if ||X|| is small and the coefficients decay quickly.
- The key idea is to perform computations on data of small magnitude (norm) in low precision.

N. J. Higham and X. Liu. Mixed-precision Paterson—Stockmeyer method for evaluating matrix polynomials. Working note.

Proof of Thm. 1

On defining

$$\Delta A = \widehat{A} - A$$
, $\Delta B = \widehat{B} - B$, $\Delta C = \widehat{C} - C$,

we have

$$\begin{split} E &= \mathsf{fl}_{\mathcal{S}}(\mathsf{fl}_{\mathcal{P}}(\widehat{A}\widehat{B}) + \widehat{C}) - (AB + C) \\ &= A\Delta B + \Delta AB + \Delta A\Delta B + E_{\mathcal{P}} + \Delta C + E_{\mathcal{S}}, \end{split}$$

where, with $\gamma_n^p := nu_p/(1 - nu_p)$,

$$E_{p} \le \gamma_{n}^{p} \|A + \Delta A\| \|B + \Delta B\|,$$

 $E_{s} \le u_{s} \|(A + \Delta A)(B + \Delta B) + E_{p} + C + \Delta C\|.$

The result follows after straightforward calculation.

Proof of Thm. 2: I

We have, with $||X||_1 =: \sigma \leq \sqrt[s]{s!}$, for i = 2: r and $s \geq 3$,

$$\begin{split} \frac{\|B_{i-1}\|_{1}}{\|B_{i}\|_{1}\|Y\|_{1}} &= \frac{\left\|\frac{1}{((i-1)s)!}I + \frac{1}{((i-1)s+1)!}X + \dots + \frac{1}{((i-1)s+s-1)!}X^{s-1}\right\|_{1}}{\left\|\frac{1}{(is)!}I + \frac{1}{(is+1)!}X + \dots + \frac{1}{(is+s-1)!}X^{s-1}\right\|_{1}\|X^{s}\|_{1}} \\ &\geq \frac{\frac{1}{((i-1)s)!} - \left(\frac{\sigma}{((i-1)s+1)!} + \frac{\sigma^{2}}{((i-1)s+2)!} + \dots + \frac{\sigma^{s-1}}{((i-1)s+s-1)!}\right)}{\left(\frac{1}{(is)!} + \frac{\sigma}{(is+1)!} + \dots + \frac{\sigma^{s-1}}{(is+s-1)!}\right)s!} \\ &\geq \frac{\frac{1}{((i-1)s)!} - \frac{\sigma}{((i-1)s+1)!}\left(1 + \frac{\sigma}{(i-1)s+2} + \dots + \frac{\sigma^{s-2}}{((i-1)s+2)^{s-2}}\right)}{\frac{1}{(is)!}\left(1 + \frac{\sigma}{is+1} + \dots + \frac{\sigma^{s-1}}{(is+1)^{s-1}}\right)s!} \\ &= :\gamma(s). \end{split}$$

Proof of Thm. 2: II

On the other hand, we know from Stirling's approximation

$$\frac{\sigma}{s} \leq \frac{\sqrt[s]{s!}}{s} \sim \frac{\sqrt[2s]{2\pi s}}{e} \to e^{-1}, \quad s \to \infty,$$

which says σ grows at most (linearly) like $e^{-1}s$ for sufficiently large s. Therefore, we have, for sufficiently large s,

$$\begin{split} \gamma(s) = & \frac{\frac{1}{((i-1)s)!} - \frac{\sigma}{((i-1)s+1)!} \cdot \frac{1 - (\sigma/((i-1)s+2))^{s-1}}{1 - \sigma/((i-1)s+2)}}{\frac{s!}{(is)!} \cdot \frac{1 - (\sigma/(is+1))^s}{1 - \sigma/(is+1)}} \sim \frac{(is)! \left(1 - \frac{\sigma}{is+1}\right)}{s!(is-s)!} \\ \gtrsim & \left(1 - \frac{1}{ei}\right) \binom{is}{s} \geq \left(1 - \frac{1}{ei}\right) \frac{(is)^s}{s^s} = \left(1 - \frac{1}{ei}\right) i^s. \end{split}$$

References I

Massimiliano Fasi.

Optimality of the Paterson–Stockmeyer method for evaluating matrix polynomials and rational matrix functions.

Linear Algebra Appl., 574:182–200, 2019.

Massimiliano Fasi and Nicholas J. Higham.

An arbitrary precision scaling and squaring algorithm for the matrix exponential.

SIAM. J. Matrix Anal. Appl., 39(1):472-491, 2018.

References II

algorithms.

Gareth Hargreaves.
Topics in matrix computations: Stability and efficiency of

PhD thesis, University of Manchester, Manchester, England, August 2005, 204 pp.

- Nicholas J. Higham and Srikara Pranesh. Simulating low precision floating-point arithmetic SIAM J. Sci. Comput., 41(5):C585—C602, 2019.
- Michael S. Paterson and Larry J. Stockmeyer.
 On the number of nonscalar multiplications necessary to evaluate polynomials

 SIAM J. Comput., 2(1):60–66, 1973.