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SYSTEMS AND CONTROL THEORY The object and M0t|vat|on

@ COMPUTATIONAL METHODS IN Matrix Polynomials

The goal is to evaluate the matrix polynomial

Pm(X) =D biX =bol + b1 X +bpX? + -+ by X
=0

It often results from truncated series expansions (with [|b, X™|| < e < 1)
in computation of matrix functions and solution of matrix equations:

e series expansion (e.g., Taylor series)
e rational functions ¢(X)~!p(X)

e rational matrix equations 7(X) = A

Evaluating polynomials of matrices
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SYSTEMS AND CONTROL THEORY The object and M0t|vat|on

@ COMPUTATIONAL METHODS IN Matrix Polynomials

The goal is to evaluate the matrix polynomial

m
Pm(X) =D biX =bol + b1 X +bpX? + -+ by X
i=0
It often results from truncated series expansions (with [|b, X™|| < e < 1)
in computation of matrix functions and solution of matrix equations:
e series expansion (e.g., Taylor series)
e rational functions ¢(X)~!p(X)
e rational matrix equations 7(X) = A

So, practically,
e meN,

e b, € C and |b;| can decay quickly, e.g., the Taylor series of exp, cos

o X € C™™ with || X]| usually being small.

Evaluating polynomials of matrices
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ms;@ cowmmomcvenoos i Paterson-Stockmeyer Method

For s € NT, we can rewrite p,,,(X) as a polynomial in X* with matrix
coefficients B; (Paterson and Stockmeyer, 1973)

pm(X) =D B (X*)', r=|m/s],
=0

where

s—1
sti+jX], iZO,...,T—l,
J=0
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o o oo Paterson—Stockmeyer Method

For s € NT, we can rewrite p,,,(X) as a polynomial in X* with matrix
coefficients B; (Paterson and Stockmeyer, 1973)

pm(X) =D B (X*)', r=|m/s],
=0
where

s—1
E bsi—i—jX], iZO,...,T—l,
J=0
m—sr

§ Cbery X7, i=n
=0

B; =

e For example, with m = 6 and s = 3,

p6(X) = bel (X3)% 4 (b5 X% + by X + b3I) X3 + (b2 X2 + b1 X 4 boI)
B> B1 BVO
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COMPUTATIONAL METHODS IN Paterson—StOCkmeyer Method

SYSTEMS AND CONTROL THEORY EVaIUatIOn

Pm(X) = (((BTXS + B )X+ By ) X5+ + B1>XS + B,
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@ COMPUTATIONAL METHODS IN Paterson—StOCkmeyer Method

SYSTEMS AND CONTROL THEORY EVaIUatIOn

Pm(X) = (((BTXS + B )X+ By ) X5+ + B1>XS + B,

Input : X € C"*", by, by,...,b, € C
Output: Z = p,,,(X)
1 XAy« I, X+ X
2 for i < 2 to s do
3 L X, — XX > X2 ..., X® computed and stored
4 7 37 bsryj X
5 for i < r — 1 down to 0 do
6 | 7 ZX+ 3500 bsir X

7 return Z
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SYSTEMS AND CONTROL THEORY EVaIUatIOn

@&! @ COMPUTATIONAL METHODS IN Paterson—StOCkmeyer Method

Pm(X) = (((BTXS + B )X+ By ) X5+ + B1>XS + B,

Input : X € C"*", by, by,...,b, € C
Output: Z = p,,,(X)
1 XAy« I, X+ X
2 for i < 2 to s do
3 L X, — XX > X2 ..., X® computed and stored
4 7 3700 bsri i X
5 for i < r — 1 down to 0 do
6 | 7 ZX+ 3500 bsir X

7 return Z

e Two extreme cases: (i) s = 1: (plain) Horner's method
(i) s = m: evaluation via explicit powers.
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@ COMPUTATIONAL METHODS IN Paterson—StOCkmeyer Method
SYSTEMS AND CONTROL THEORY

Storage Requirement and Cost

p(X) = (((B,XS + By 1)X*+ By o) X540+ Bl>XS + By

m (s +2)n? elements of storage

m about s — 1 + 7 matrix products, incl. 7 = |m/s| products in the
Horner's stage

Theorem

The choice s = |/m] or s = [\/m] minimizes the number of matrix

products required to evaluate p,,(A) over all choices of s. The minimized
number of matrix products is about 2./m.

Xiaobo Liu, xliu@mpi-magdeburg.mpg.de
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SYSTEMS AND CONTROL THEORY

Q&!@ COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

Observation and Key Idea

For pm(X) = (((BTXS + Br—l)XS + BT_Q)XS 4+ .o+ Bl)Xs + By,
| B;]| [|X*|| < ||B;i1|| can hold for some i = v: r,

5+ baisa X+ b X X <
Hbsi—sI +bgigp1 X + -+ bsi—le_lH ‘

Intuition: dominant terms in B; and B;_1 have scalar coefficients being s
indices apart from {b;}.
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COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

SYSTEMS AND CONTROL THEORY

H Observation and Key Idea
For pm(X) = (((B,X® + By_1)X® + By_3)X* + -+ + B)) X* + By,
| B;|| | X¢]| < ||Bi—1|| can hold for some i = v: r,
[bei ] + bsit1 X + -+ + baipa 1 X7 | X7 <
|bsizs] + bsi—st1 X + -+ + bsi_le‘lH .

Intuition: dominant terms in B; and B;_1 have scalar coefficients being s
indices apart from {b;}. Consider X = [ ! {] with b; =1/i! and s =6,

1
1 Ball 1| X1 & ]—u—

TREE [ X5y = 6.5 x 1078

<18x103:‘ ~ || By

7|
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COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

SYSTEMS AND CONTROL THEORY

H Observation and Key Idea
For pm(X) = (((B,X® + By_1)X® + By_3)X* + -+ + B)) X* + By,
| B;|| | X¢]| < ||Bi—1|| can hold for some i = v: r,
il + bsia X + -+ + bgins 1 X1 |X¥)) <
[bsi—sT + bsi—ss1 X + -+ b1 X571

Intuition: dominant terms in B; and B;_1 have scalar coefficients being s
indices apart from {b;}. Consider X = [ ! {] with b; =1/i! and s =6,

1
|Balb |4 ~ ]—u—

ol X[ X =65 % 1078

<18x107% = ‘ ~ || By

7!

Idea for Utilizing Multi-Precisions

fI(AB + C) = flpigh(fliow (AB) + C) for |A||B| < |C| and do this
recursively in the evaluation of p,,.
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SYSTEMS AND CONTROL THEORY

Q&!@ COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

Framework

Given precisions w, > U,_1 > -++ > U, > u, we compute

Ur—1
"

~
Uy

—~
(X)) = (((BTXS B, )X 4B, 9)X* 4+ Bv);gs
~————

Up—1

TV
Ur—2

in the lower-than-working precisions and

pm(X) = ((((Qv(X) + By_1)X® + By_2) X° + -+ + BI)XS + By

in the working precision wu.
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COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

SYSTEMS AND CONTROL THEORY
Error Bound

Up—1

. Uy
Evaluation: ¢,(X) = (((BTXS B, )X 4B, 5) X5+ -+ BU)XS.
—_———

Ur—1

Up—2
Theorem (Error bound for ¢, (X))
Given ||Bz|| ||XS|| =T; ”Bz—1|| for some T <K 1, “Bz — Bz” < U; ||Bl|| for

i=w:r, and [[fI(X?®) — X¥|| < u, || X?||, then by setting the precisions
Uy—1 = u and

w; = Ui—1/Ti, =0T,

(sou K uy K --- < u,) we have
130 = qu(X)II S (r — v + Dnu (X)),

where r = |m/s] (assuming ((1 + max; 7;)n + 2) ||¢,(X)]| v < 1).

Xiaobo Liu, xliu@mpi-magdeburg.mpg.de
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SYSTEMS AND CONTROL THEORY

Q& @ COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

Error Bound

Theorem (Error bound for ¢, (X))
Given ||Bz|| ||Xs|| =T; ||Bz—1|| for some Tl < 1, “Bz — BZH S U; ||Bl||I for
i=w:r, and [[fI(X?®) — X¥| < u, |[|X?||", then by setting the precisions
Uy—1 = w and

i = ui—1/Ti, t=wv:T,

(sou K uy K --- < u,) we have
170 = q(X)II S (r — v + Dnu (X)),

where r = |m/s] (assuming ((1 4+ max; 7;)n + 2) ||¢,(X)|| v < 1).
e If v=1and | Bo - Bol| < enul|Boll, [5im = pin(X)II S rnu [[pm (X
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SYSTEMS AND CONTROL THEORY

Q& @ COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

Error Bound

Theorem (Error bound for ¢, (X))
Given ||Bz|| ||Xs|| =T; ||Bz—1|| for some Tl < 1, “Bz — BZH < u; ||Bl||I for
i=w:r, and [[fI(X?®) — X¥| < u, |[|X?||", then by setting the precisions
Uy—1 = w and

i = ui—1/Ti, t=wv:T,

(sou K uy K --- < u,) we have
170 = q(X)II S (r — v + Dnu (X)),
where r = |m/s] (assuming ((1 4+ max; 7;)n + 2) ||¢,(X)|| v < 1).
e If v=1and | Bo - Bol| < enul|Boll, [5im = pin(X)II S rnu [[pm (X

i The required powers X2, ..., X* are formed in the working precision
u for the accuracy of By.
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SYSTEMS AND CONTROL THEORY

Q& @ COMPUTATIONAL METHODS IN Exploiting Multi-Precisions in Paterson—Stockmeyer

Error Bound

Theorem (Error bound for ¢, (X))
Given ||Bz|| ||Xs|| =T; ||Bz—1|| for some Tl < 1, “Bz — BZH < u; ||Bl||I for
i=w:r, and [[fI(X?®) — X¥| < u, |[|X?||", then by setting the precisions
Uy—1 = w and

i = ui—1/Ti, t=wv:T,

(so u € uy < -+ < u,) we have

170 = q(X)II S (r — v + Dnu (X)),

where r = |m/s] (assuming ((1 4+ max; 7;)n + 2) ||¢,(X)|| v < 1).
e If v=1and | Bo - Bol| < enul|Boll, [5im = pin(X)II S rnu [[pm (X

i The required powers X2, ..., X* are formed in the working precision
u for the accuracy of §0.

i From standard analysis | f1(X?®) — X*| < snu|X|®, so the condition
holds if sn7, || X||° < [|X||, or, || X*|| not much less than || X||*.
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SYSTEMS AND CONTROL THEORY

@“! @ COMPUTATIONAL METHODS IN Mixed-Precision Paterson—Stockmeyer

Bounds for Taylor Approximants of e

e For the error in By = By(X) = >, b; X7, standard error analysis
implies

nu

HBO - BO(X)H < ’7(8—2)n+QBO(||X||) ~ 7(5—2)n+2€”X”’ Tn = 1—nu’

then using 1 < [|e| |le™]| < HeXHeIIXII,

1Bo = Bo(X)| € Ys-anae! el JeX || = X snu]| Bo(X)]] -
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SYSTEMS AND CONTROL THEORY

%&! @ COMPUTATIONAL METHODS IN Mixed-Precision Paterson—Stockmeyer

Bounds for Taylor Approximants of e

e For the error in By = By(X) = >, b; X7, standard error analysis
implies

nu

HBO - BO(X)“ < Ys—2)m+2Bo (| X]]) = 7(5—2)n+2€”X”’ T T

then using 1 < ||e*| He—XH < HeXHeIIXII,
1Bo — Bo(X)|| < 7(3_2)n+2e”X”e”XH HeXH ~ Xl snu || By(X)].

e A sufficient condition for [[f1(X?®) — X*|| < w, || X?]| is
snty || X])° < || X?||, one can show

snry|| XI5 _ snl|Bola[| XI5 o fenelXl, v =1,
|X5]1 [ Bo—1ll1 sn/(%), v>1,

with the asumption || X||; < s/e.
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SYSTEMS AND CONTROL THEORY

@ COMPUTATIONAL METHODS IN Mixed-Precision Paterson—Stockmeyer

The General Algorithm

Input : X € C™", {p;}7, CC
Output: P = p,,,(X)
s« [vm], < |m/s|,vr+1
Compute X := {X*}_, and By in precision u = ug
for i <~ 1 to r do
Assemble B; using elements in X U {I, X} and estimate || B;||;
| ui < IBicaluwima /(IBil1 | X)) > wi = uia /7, 7 < 1

g b W=

— min{i: u; > du}, uy—1,Uy—2,...,u; < u, P+ B,
for i < r down to 1 do

Compute P <— PX? in precision u;

Form P «+ P + B;_1 in precision u;_1

10 return P

<

© o N o

m need store {X*}_; and {B%}_,: about 2sn? elements of storage
B s+ v — 2 matrix products in v and 1 in each of wu,, tyt1,- .., Up.
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SYSTEMS AND CONTROL THEORY

@ COMPUTATIONAL METHODS IN Mixed-Precision Paterson—Stockmeyer

The General Algorithm

Input : X € C™", {p;}7, CC
Output: P = p,,,(X)
s« [vm], < |m/s|,vr+1
Compute X := {X*}_, and By in precision u = ug
for i <~ 1 to r do
Assemble B; using elements in X U {I, X} and estimate || B;||;
| ui < IBicaluwima /(IBil1 | X)) > wi = uia /7, 7 < 1

g b W=

— min{i: u; > du}, uy—1,Uy—2,...,u; < u, P+ B,
for i < r down to 1 do

Compute P <— PX? in precision u;

Form P «+ P + B;_1 in precision u;_1

10 return P

<

© o N o

m need store {X*}_; and {B%}_,: about 2sn? elements of storage
B s+ v — 2 matrix products in v and 1 in each of wu,, tyt1,- .., Up.
e How practical is the algorithm (are the conditions 7; < 1, i = v: r)?
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SYSTEMS AND CONTROL THEORY

A COMPUTATIONAL METHODS IN Mixed-Precision Paterson—Stockmeyer
Q&Ag

Bounds for Taylor Approximants of e*

Theorem (Decay of ;)
If || X1 < s/e, fori=2:r,

_ IBillalIX#l e

- < © s ~158i.
Y Bl Ye-1

m 7; decreases at least polynomially as 7 increases and at least
exponentially as s increases.
m Bound not applicable to 71 = we have the bound
_ Byl X[y < XN X[ < )1< X
[ Bollx stiBolln IXI1T ™ lle*fln 1XI3

Xiaobo Liu, xliu@mpi-magdeburg.mpg.de Evaluating polynomials of matrices


mailto:xliu@mpi-magdeburg.mpg.de

SYSTEMS AND CONTROL THEORY

Q&!@ COMPUTATIONAL METHODS IN Mixed-Precision Paterson—Stockmeyer

Bounds for Taylor Approximants of e*

Theorem (Decay of ;)
If || X1 < s/e, fori=2:r,

_ IBillalIX#l e

- < © s ~158i.
Y Bl Ye-1

m 7; decreases at least polynomially as 7 increases and at least
exponentially as s increases.
m Bound not applicable to 71 = we have the bound
_ Byl X[y < XN X[ < )1( X
[ Bollx stiBolln IXI1T ™ lle*fln 1XI3

e A special treatment for || X||; < s/e is possible: choose s sufficiently
larges.t. 7; < 1,i=1:r.

e Insight for the general case (?): larger s makes v in7; < 1, i=wv:r
smaller. (Recall s+ v — 2 matrix products in u and 1 in wy, Uyi1, - .-, Ur).
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COMPUTATIONAL METHODS IN Numerical Experiments

SYSTEMS AND CONTROLTHEORY. 1, from Taylor Approximant of exp, Varying m

1007310

—_—rnu —_—rnu

107!

1072
103

0%y
a

-65 L L L L L L L L L L -65 L L L L L L L L L L
10
5 11 17 23 29 35 41 47 53 59 65 71 5 11 17 23 29 35 41 47 53 59 65 71
m m

Left: X = rand(n). Right: X = randn(n). n = 50.

| X||1 = [/m]/e, Variable-precision environment with u = 1074
(Simulated by Advanpix), and € = ||[pim — pm (X)) |1/ [pm (X) |1
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SYSTEMS AND CONTROL THEORY

@ COMPUTATIONAL METHODS IN Numerical Experiments

Complexity Reduction in Variable Precisions

Table: m: minimal degree such that [[eX — p,,(X)|1 < u. d;: equivalent decimal
digits of precision u;. C,: approximate complexity reduction in percentage
(assuming complexity is linearly proportional to the number of digits used).

(u, m) (s,7) (di,da,....dr)  Chp
(10722, 37) (7,5) (30,25,18,11,3)  20.7%
(10754, 60) (8,7) (61,55,47,38,28,18,7)  21.6%
(10125 99) (10,9) (124,115,104, 92,78, 64,49,34,18)  20.6%

(1072%6,169)  (13,13)  (249,237,221,203,184, 164, 143,121,99, 75,52, 28,3)  24.2%

X = gallery(’cauchy’,n) for n = 100 with ||.X||; ~ 4.20

o 7, = u;_1/u; = 10%~%-1 is in general decreasing (w.r.t. i), 20% of the
matrix products were performed in precision u!/2 or much lower.
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COMPUTATIONAL METHODS IN Numerical Experiments

SYSTEMS AND CONTROL THEORY 0, from Taylor Approximant of exp, u = 10~%

1059 . . . . . —— 40% : : ; . . —
—_rnu
10-60 L vV €
¢ v O €f 30% H
10-61 L /)

1062 120% |

10-63 L

10-64

10-65&

0 15 30 45 60 75 90 97 c‘0 15 30 45 60 75 90 97

97 non-Hermitian matrices from (Fasi and Higham, 2018), 2 < n < 100.
The degree m and scaling ¢ are from e = €2’ X ~ p,, (X)?. u = 10764,

Left: € = ||pm — P (X)|l1/]lpm (X)||1. Right: the approximate percentages
of complexity reduction.
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COMPUTATIONAL METHODS IN Numerical Experiments

. —25
SYSTEMS AND CONTROLTHEORY 1, from Taylor Approximant of exp, u = 10~ 2°¢

107247 . . . . . . 35%
—_—Tnu 30% |
vV & °
10249 A4 1
A ESA
10251} 120% ]
15% [
-253 o
10 1 v v
v 10% ‘
-255
10 504 | ‘
107257 0%

0 15 30 45 60 75 N 90 97 0 15 30 45 60 75 90 97

97 non-Hermitian matrices from (Fasi and Higham, 2018), 2 < n < 100.
The degree m and scaling ¢ are from e = 2 X ~ pm(X)zé_ u = 107256,

Left: € = ||pm — P (X)|l1/]lpm(X)||1- Right: the approximate percentages
of complexity reduction.
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COMPUTATIONAL METHODS IN Numerical Experiments

SYSTEMS AND CONTROLTHEORY 1, from Padé Approximant of exp (Numerator)

1070 . . . . . — 50% T T " . . —
—rnu
10-60 L VvV €

o o |140%

c‘0 15 30 45 60 75 90 97

97 non-Hermitian matrices from (Fasi and Higham, 2018), 2 < n < 100.
The degree m and scaling ¢ are from e = €2 X ~ ., (X)2'. u = 10764,

e Scalar coefficients from Padé decay faster than from Taylor and smaller
degree m is chosen!
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COMPUTATIONAL METHODS IN Numerical Experiments

SYSTEMS AND CONTROLTHEORY. 1, from Taylor Approximant of cos

1079 : : : : : 20%

v —rnu
-60 L VvV €
10 o o E”
! 15% 1

110%

5%

o or— ooy 0%
0 15 30 45 60 75 98 c,O 15 30 45 60 75 98

98 non-Hermitian matrices from (Al-Mohy, Higham and L, 2022),
4 < n < 100. The degree m and scaling ¢ are from e = 2’ X ~ p,,(X)?".
u=10"%%

e Scalar coefficients for cos decay faster than for exp and smaller degree m
is chosen (plus py,(X?) is actually evaluated via Paterson-Stockmeyer).
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COMPUTATIONAL METHODS IN ]
@ SYSTEMS AND CONTROL THEORY Conc|US|0ns

m Lower(-than-working) precisions can be exploited in the
Paterson-Stockmeyer method, if || X|| is “small” (which (I think) is
satisfied in most of the practical cases) and modulus of the scalar
coefficients decays quickly.

m The key idea is to perform computations on data of small magnitude
(norm) in low precision.

m Better understanding of the method is desired (e.g., for exp the
algorithm works well and the bound appears pessimistic).

» X. Liu. Mixed-precision Paterson—Stockmeyer method for evaluating
polynomials of matrices. preprint, https://arxiv.org/abs/2312.17396.

Thank you for your attention!

Xiaobo Liu, xliu@mpi-magdeburg.mpg.de Evaluating polynomials of matrices


mailto:xliu@mpi-magdeburg.mpg.de

Serame b como meeony - Bibliographies |

&y Advanpix.
Multiprecision Computing Toolbox.

Advanpix, Tokyo, Version 5.1.1.15444.

Awad H. Al-Mohy and Nicholas J. Higham and Xiaobo Liu.
Arbitrary Precision Algorithms for Computing the Matrix Cosine and
its Fréchet Derivative.

SIAM. J. Matrix Anal. Appl., 43(1):233-256, 2022.

Massimiliano Fasi.
Optimality of the Paterson—Stockmeyer method for evaluating matrix
polynomials and rational matrix functions.
Linear Algebra Appl., 574:182-200, 2019.

Xiaobo Liu, xliu@mpi-magdeburg.mpg.de Evaluating polynomials of matrices


http://www.advanpix.com
https://doi.org/10.1137/21m1441043
https://doi.org/10.1137/21m1441043
https://doi.org/10.1016/j.laa.2019.04.001
https://doi.org/10.1016/j.laa.2019.04.001
mailto:xliu@mpi-magdeburg.mpg.de

@ cowummowwenoosw  Bibliographies |1

Massimiliano Fasi and Nicholas J. Higham.
An arbitrary precision scaling and squaring algorithm for the matrix
exponential.
SIAM. J. Matrix Anal. Appl., 39(1):472-491, 2018.

ﬁ Gareth Hargreaves.
Topics in matrix computations: Stability and efficiency of algorithms.
PhD thesis, University of Manchester, Manchester, England, August
2005, 204 pp.

Michael S. Paterson and Larry J. Stockmeyer.
On the number of nonscalar multiplications necessary to evaluate

polynomials
SIAM J. Comput., 2(1):60-66, 1973.

Xiaobo Liu, xliu@mpi-magdeburg.mpg.de Evaluating polynomials of matrices


https://doi.org/10.1137/18M1228876
https://doi.org/10.1137/18M1228876
https://doi.org/10.1016/0024-3795(93)90111-Z
https://doi.org/10.1137/0202007
https://doi.org/10.1137/0202007
mailto:xliu@mpi-magdeburg.mpg.de

	Matrix Polynomials
	The object and Motivation

	Paterson–Stockmeyer Method
	Paterson–Stockmeyer Method
	Evaluation

	Paterson–Stockmeyer Method
	Storage Requirement and Cost

	Exploiting Multi-Precisions in Paterson–Stockmeyer
	Observation and Key Idea

	Exploiting Multi-Precisions in Paterson–Stockmeyer
	Framework

	Exploiting Multi-Precisions in Paterson–Stockmeyer
	Error Bound

	Exploiting Multi-Precisions in Paterson–Stockmeyer
	Error Bound

	Mixed-Precision Paterson–Stockmeyer
	Bounds for Taylor Approximants of eX

	Mixed-Precision Paterson–Stockmeyer
	The General Algorithm

	Mixed-Precision Paterson–Stockmeyer
	Bounds for Taylor Approximants of eX

	Numerical Experiments 
	pm from Taylor Approximant of , Varying m

	Numerical Experiments
	Complexity Reduction in Variable Precisions

	Numerical Experiments
	pm from Taylor Approximant of , u=10-64

	Numerical Experiments
	pm from Taylor Approximant of , u=10-256

	Numerical Experiments
	pm from Padé Approximant of  (Numerator)

	Numerical Experiments
	pm from Taylor Approximant of 

	Conclusions
	Bibliographies

