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Matrix Polynomials

We want to evaluate the matrix polynomial
m .
Pm(X) = biX' = bol + by X + bX? + -+ + bpX™,
i=0

where
e me N,
e b; € C and mostly nonzero,
o X e CM™n.
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e Computation of matrix functions

e series expansion (Taylor series)

e rational functions g(X)~'p(X)

e Solution of matrix equations
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Paterson—Stockmeyer Method

For a positive integer s, we can rewrite (Paterson and
Stockmeyer, 1973)

pm(X) =D Bi-(X°), r=m/s],
i=0

where

( s—1

st,-HXf, i=0,...,r—1,

j=0
m—sr

> bey X, i=r.
( /=0
e pm(X) is a polyn. in X* with coefficients B;: e.g., (s = 3),
Ps(X) = bl (X3)24+(bsX? + by X + bal) X34 (b2 X? + by X + bolz

Ny . A\ ~~
Bz B; By
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Paterson—Stockmeyer Method: Evaluation

Pn(X) = (((B,Xs + B )X+ B p) XS+ -+ B1)XS + By

Input : X € C"™" by, by,..., by € C
Output: Z = p,(X)

1 X+ LX X

2 fori <+ 2to sdo

3 \ X+ XX;_y > X2 ..., XS computed and stored

4 end

5 Z ¢ S0 bary

6 fori < r—1 down to O do

7 | Z ZX+ 35 beinX;

8 end

9 return Z
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Paterson—Stockmeyer (PS) Method

Pn(X) = (((B,Xs + B )X+ B p) XS+ -+ B1)XS + By

m (s — 1)n? additional storage

m about s+ r — 1 matrix products (recall that r = [m/s])

Theorem (Hargreaves, 2005; Fasi, 2019)

The choice s = |/m] or s = [\/m] minimizes the number
of matrix products required to evaluate p,,(A) over all

choices of s. The minimized number of matrix products is
about 2./m.
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Exploiting Mutiple Precisions in PS

Practical considerations:
e || X|| is usually small;
e b; can decay quickly, e.g., the Taylor series of exp, cos.

For PS method

Pon(X) = (((B,xs + B )X+ Bo) XS+ + B1>XS + By,
can we have ||Bj| || X®|| < ||Bi_1|l,i=r:1?

Key idea: 1. If |A| < |C|,|B| < |C|, and |A||B| < |C|,
computing the product in AB + C in a lower precision than

the

2. Apply the above idea recursively in the evaluation of pp,.
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Exploiting Multi-Precisions in PS: Framework

Ur—1
7\
7 N

ur

~ =
Pm(X) = (((BrXs+Br_1)XS+Br_2)XS +-- 4 B1)XS + Bo.
N——

[\ S/
-~

where we require
1Bi = Bill < ui||Bill, i=r:0, [X&—X°| <u X,
and the precisions u; are chosen by

By
= H—HSI-UQ, = ¢ r,
1Bl 1X=]l
whichmeans U = Uy < Uy < --- < U, Since
Uj 1Bi—1]| ,
= >1, i=1:r.
ui—r || Bill [[X?]]
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Exploiting Multi-Precisions in PS: Framework

I\ Bill [|X5|| < 7| Bi—1]|, i = r: 1 for some 7 < 1 (by
choosing a suitable s), we then have (Higham and L,
Working note)

1Bm — Pm(X)|| < rou || pm(X))

where r = [m/s|.

e Do we have ||B,— B/| < u;||B/|, i = r: 0and
X5 — X2 < un || X912

1. Form X = {X? X3,..., X5} in up (note Uy < ).

2. Compute B; using the powers in X and downgrade B, to
u; (after estimating || Bi||).

Question: Is it possible to use vy and a lower precision
U, > U in forming the powers in X'?
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Explicit Powering for By Using Two Precisions

Key idea: For the matrix sum X; + Xz in up (in our case
Up = Up), Where || Xz|| < || X1]|. Xz can be stored in a lower

precision
Up|| X1 + Xl unl| X4l

R CEED I AR

Xo: Xz converted into precision u, > up, we have

fl(Xi + Xo) = (X1 + Xa(1 + 8,))(1 + 6n), [0n] < Un, |62 <
and
E = fln(Xi + Xo) — (Xi + Xo) = n(Xi + Xe) + 6,1 + 0p) Xz
with
IE| < un || X1 + Xo|l + ue(1 + un) ([ Xol| < 2up [| X1 + Xz -
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Explicit Powering for By Using Two Precisions

Track the norm of fl5(qi(X)) := fla(bol + b1 X + - - - + biX7),

until, for j = t,
G 19:(X)] - U U < 19 (X)I|__ [Ifla(q:(X))]]
Un ™ [Brga | [[ X5 || X HthXfHH by X1

where t; + b =t + 1.
e Can find the best available t;, t, in f norm estimations.

qu( +br+1X’“H qu M=o X e e
| b2 X2 < | b2 X2 ~ Un Up
e Can form the rest of the required powers X', ... X5 "in

precision u; > up, if
Hbt+1Xt+1 H Z Hbt+2)(t+2H Z z Hbs_1XS_1 H '
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Taylor Approximant of the Matrix Exponential

If || X|[s < /s!(= s/e+ 1), for i = 2: r and sufficiently large

s >3,
[|Bi-1][1 > (1 5 l) s
1Bill+[1X5]| el

Recall that we need to choose s such that
1Bl || XS]] < 7|Bi_1]|, i = r: 1 for some 7 < 1 in computing

Pn(X) = (((B,XS + B )XS+ B g) XS+ + 31)xs + Bo.

e For a fixed s > 3, the ratio ||B;_1]|1/(||Bil|1]|X*||1) tends to
increase polynomially as i increases, i = 2: r.

« Bound not applicable for ||Bo|l+ /(||Bs |11 X51)-
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For the Matrix Exponential: the Algorithm

0o N O o~ O DN =

Input : XecC™ meN",u>0
Output: A Taylor approximant P of order m for eX
S < [\/ﬁ?},Uo%U,X()(—/,)Q +— X
Compute By and Y = X®in u (and potentially u, > u)
while (e — 1)s!||By||s <er| Y|+ and s < mdo
By + By + Y/S!,S<—S+1
Update Xs + XY and Y < X,
end
fori«~ 1tor« [m/s| do
Compute B; using elements in X and estimate || B;||1
Downgrade B; to u; < u;_1||Bi_1||+/(|Bi[l1]| Y}+)
end
P =B,
fori«+< rto1do
Convert Y into u; and compute P + PY in u;
Form P« P+ B;_1in uj_4
end
return P
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The Parameter s and the Cost

m The matrix products in computing By are most
expensive: smaller s with larger r = | m/s| benefits
efficiency

m Smaller s puts a more strict requirement: || X||; < v/s!
m A larger s is more likely to be accepted by the algorithm
Overall cost: [v/m] —1 < s—1 < m— 1 matrix

multiplications in precision v and 1 matrix multiplication in
eachof uj>u,i=1:r,where 1 <r=|m/s| < [v/m].
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Numerical Experiment Using High Precisions
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m m

Left: X = rand (n). Right: X = randn (n). n =50

I X|ls =1, u = 10-%* (Simulated by Advanpix
Multiprecision Computing Toolbox), and
e = ||Pm = Pa(X)|| / lPm(X)-
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Numerical Experiment Using Low Precisions
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Left: X = rand (n) . Right: X = randn (n). n =50

IX[f =1, u=2"3~1.1x10""%, and
€ = Hpm_pm(X)H/Hpm(X)H

e Only double, , and half (simulated by chop)
(Higham and Pranesh, 2019) precisions are used.
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Numerical Experiment: Approximating exp(X)

Table: The minimal degree m such that the error in approximating
the matrix exponential via a Taylor approximant is of order u. d;
represents the equivalent decimal digits of precision u;.

(U, m) (s7 r) (d1 0o, ... dr)
(10—64754) (8 ) (61 54 45 35 24 13)
(10-128.92)  (10,9) (123,113,101, 88,73, 58,42, 25, 8)

(10-2% 158) (13,12) (248,234,217,198,178,156,133,110,86,62,36,11)

X =gallery (' cauchy’,n) for n =20 with | X|; ~ 2.65

e The default s = [/m] is chosen in all cases, and 20% of
the matrix products were performed in precision u'/2 or
much lower.
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Concluding Remarks

m Lower precisions can be used in the PS method if || X]|
is small and the coefficients decay quickly.

m The key idea is to perform computations on data of
small magnitude (norm) in low precision.

N. J. Higham and X. Liu. Mixed-precision Paterson—Stockmeyer
method for evaluating matrix polynomials. Working note.
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Proof of Thm. 1: |

We have, with || X|; =: o < /s, fori=2: rand s > 3,

X+

+ e |

!+ X g X Xl

1Bi-1ll1 :H(u DI (G o
IBill 1l Yl+ ‘

1

U

o oS~ 1
- ((if1)s)! - <((i—1)s+1)! + sy T T [ )srs= 1*)')
- 1 o os—1
(@ TGy T T Gerem 1)1) s!

1 o 1 g2
(GO (G ( T s T st 2>

,L(-] _|_,L+...+L71>SI
(is)! is+1 (is+1)s—1 :
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Proof of Thm. 1: Il

On the other hand, we know from Stirling’s approximation

o /s ¥2rs 1
g S S ~ — € , S — 00,
e

which says o grows at most (linearly) like e~'s for sufficiently
large s. Therefore, we have, for sufficiently large s,

o 1—(o/((i—1)s42)°" ¢ -
~+(8) = (DI () o) B e () N ) (1 - @)

1 1—(o/(is+1))S I(is — 8)!
(%'). 1S0'//((I}SS+1))) sl(is — s)!

(-2 ()= (-2 &= (1-2)#

OJ
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